3GPP TSG SA WG5 (Telecom Management) Meeting #118
S5-182447
9-13 April 2018, Beijing, China
revision of S5-182098
Source:
Nokia
Title:
pCR 32.158 Add design pattern for subscribe/notify
Document for:
Approval
Agenda Item:

1
Decision/action requested

Discuss and approve this pCR.
2
References

None.
3
Rationale

None.
4
Detailed proposal

	1st modified section


5.6
Design pattern for subscribe/notify
5.6.1
Concept
HTTP is based on requests and responses. There is no built-in support for notifications and subscriptions to notifications. These mechanisms need to be modelled based on special subscription resources and the available HTTP methods. When notifications are used the server shall expose at least one subscription resource.
5.6.2
Subscription creation
To subscribe to notifications the subscriber shall send a HTTP POST request to the subscription resource.

[image: image1.png]IRPManager IRPAgent

1 1. POST .../subscription_tesource(Subscriptioninformation)

>
3_(2 201 Created (ResourceRepresentation) |

IRPManager IRPAgent





Figure 5.6.2-1: Flow for creating a subscription
The procedure is as follows:

1. The IRPManager (notification subscriber) sends a HTTP POST to the IRPAgent. The URI shall indicate a container subscription resource. The resources representing existing subscriptions are created below the container resource. The subscriber shall indicate in the message body the URI of the resource notifications shall be sent to (notification sink) and the type of notifications that are subscribed to. Additional filter information may be included in the message body.
1. The IRPAgent returns "201 Created" on success. The message body carries the representation of the created subscription resource. The Location header shall carry the URI of the created subscription resource. On failure, the appropriate error code shall be returned. The response massage body may provide additional error information.

5.6.3
Subscription deletion
To cancel a subscription, the subscriber shall delete the corresponding resource with HTTP DELETE.
[image: image2.png]IRPManager

| 1. DELETE .. Jsubscription_resource !
1. DELETE .. /subscription_esource

1 2204 No content

IRPManager

IRPAgent

IRPAgent





Figure 5.6.3-1: Flow for deleting a subscription

The procedure is as follows:
1. The IRPManager (notification subscriber) sends a HTTP DELETE to the IRPAgent. The URI shall indicate the subscription resource to be deleted.

2. The IRPAgent returns the HTTP DELETE response to the IRPManager. On success, "204 No Content" shall be returned. The message body is empty. On failure, the appropriate error code shall be returned. The response massage body may provide additional error information.

5.6.4
Notification emission
To send a notification on the occurrence of a notifiable event the IRPAgent sends a HTTP POST request to the notification sink.
[image: image3.png]IRPManager

|_1. POST.../notification_sink(NatificationCor

12,204

No content

IRPAgent

ntent) |

(A focontent 5

IRPManager

IRPAgent





Figure 5.6.4-1: Flow for sending a notification
The procedure is as follows:
1. The IRPAgent sends a HTTP POST to the IRPManager. The URI identifies the notification sink. The notification content is included in the message body.

2. The IRPManager returns "204 No Content". The message body shall be empty. On failure, the appropriate error code shall be returned. The response massage body may provide additional error information.
This design pattern requires the IRPAgent (HTTP server) to contain a reduced feature HTTP client for sending HTTP POST requests, and vice versa, the IRPManager (HTTP client) to contain a reduced feature HTTP server for receiving HTTP POST requests and sending HTTP POST responses.
5.6.5
Subscription retrieval
The subscriber can retrieve the information about a specific subscription by sending a HTTP GET request to the URI returned by the server upon creation of this subscription. Information about all subscriptions of a subscriber can be read by invoking a HTTP GET on the parent subscription resource whilst instructing the server, using the query component, to return only the subscriptions related to the client invoking the request.
	End of 1st modified section


